Interaction between chromosome 2 and 3 regulates pulse pressure in the stroke-prone spontaneously hypertensive rat.
نویسندگان
چکیده
In an F2 cross between stroke-prone spontaneously hypertensive (SHRSP) and Wistar Kyoto (WKY) rats, we previously identified blood pressure quantitative trait loci (QTL) on rat chromosome (RNO) 2 and a pulse pressure QTL on RNO3. The aims of this study were to confirm the QTL on RNO3 and to investigate interaction between RNO2 and RNO3 loci through the generation and phenotypic assessment of single RNO3 congenic (SP.WKY(Gla)3a) and bicongenic (SP.WKY(Gla)2a/3a) strains. Hemodynamic profiling, vascular function, and renal histology were examined in these newly generated strains along with the previously reported RNO2 congenic strain (SP.WKY(Gla)2a). Our results demonstrate significant equivalent reduction in systolic, diastolic, and pulse pressure phenotypes in SP.WKY(Gla)3a and SP.WKY(Gla)2a rats, whereas greater reductions were observed with the SP.WKY(Gla)2a/3a bicongenic strain achieving blood pressure levels similar to normotensive WKY rats. Epistasis was observed between pulse pressure QTL on RNO2 and 3 at baseline and during 1% salt challenge. Vascular function and renal pathology studies indicate that QTL on RNO3 are responsible for salt-induced kidney pathology, whereas QTL on RNO2 seem to have greater impact on vascular function. RNO3 congenic and bicongenic strains have confirmed the importance of SHRSP alleles in the RNO3 congenic interval on pulse pressure variability and end-organ damage. These strains will allow interrogation of complex gene-gene and gene-environment interactions contributing to salt-sensitive hypertension and renal pathology in the SHRSP rat.
منابع مشابه
Origin of the Y chromosome influences intrarenal vascular responsiveness to angiotensin I and angiotensin (1-7) in stroke-prone spontaneously hypertensive rats.
The lineage of the Y chromosome accounts for up to 15 to 20 mm Hg in arterial pressure. Genes located on the Y chromosome from the spontaneously hypertensive rat (SHR) are associated with the renin-angiotensin system. Given the important role of the renin-angiotensin system in the renal regulation of fluid homeostasis and arterial pressure, we hypothesized that the origin of the Y chromosome in...
متن کاملContribution of genetic factors to renal lesions in the stroke-prone spontaneously hypertensive rat.
Stroke-prone spontaneously hypertensive rats (SHRSP) develop renal lesions more frequently than the closely related control strain, the stroke-resistant SHR. The aim of this study was to investigate the contribution of genetic factors to the enhanced susceptibility to renal damage of SHRSP in an SHRSP/SHR F2 intercross by means of a genotype/phenotype cosegregation analysis. For this purpose, 1...
متن کاملCongenic substitution mapping excludes Sa as a candidate gene locus for a blood pressure quantitative trait locus on rat chromosome 1.
Previously, linkage analysis in several experimental crosses between hypertensive rat strains and their contrasting reference strains have identified a major quantitative trait locus (QTL) for blood pressure on rat chromosome 1 (Chr 1) spanning the Sa gene locus. In this study, we report the further dissection of this Chr 1 blood pressure QTL with congenic substitution mapping. To address wheth...
متن کاملGenetic heterogeneity of the spontaneously hypertensive rat.
We examined DNA fingerprints of the spontaneously hypertensive rat from Shimane Institute of Health Science, Izumo, Japan, including seven substrains that were separated in the early stages of the establishment of the stroke-prone spontaneously hypertensive rat, and compared their fingerprints with those of rats from other sources. Obtained DNA fingerprints revealed that, in both the stroke-res...
متن کاملTwo genomic regions of chromosomes 1 and 18 explain most of the stroke susceptibility under salt loading in stroke-prone spontaneously hypertensive rat/Izm.
To clarify the genetic mechanisms of stroke susceptibility in the stroke-prone spontaneously hypertensive rat (SHRSP), a quantitative trait locus (QTL) analysis was performed. Using 295 F2 rats of a cross between SHRSP/Izm and SHR/Izm, 2 major QTLs for stroke latency under salt loading were identified on chromosomes (chr) 1 and 18. Evaluation of 6 reciprocal single and double congenic rats for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Hypertension
دوره 62 1 شماره
صفحات -
تاریخ انتشار 2013